

Industrial Mathematics Institute

2000:13

On convergence of weak greedy algorithms

E.D. Livshitz and V.N. Temlyakov

Department of Mathematics University of South Carolina

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number	ion of information Send comment arters Services, Directorate for Inf	ts regarding this burden estimate formation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	his collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 2000		2. REPORT TYPE		3. DATES COVERED 00-00-2000 to 00-00-2000	
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER		
On Convergence of Weak Greedy Algorithms				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of South Carolina, Department of Mathematics, Columbia, SC, 29208				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited			
13. SUPPLEMENTARY NO	OTES				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	ATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a REPORT unclassified	ь abstract unclassified	c THIS PAGE unclassified	Same as Report (SAR)	10	REST ONSIDEE I ERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

E.D. LIVSHITZ AND V.N.TEMLYAKOV

Moscow State University, Moscow, Russia// University of South Carolina, Columbia, SC, USA

1. Introduction

This paper is devoted to investigation of Weak Greedy Algorithms (WGA) introduced in [T]. We remind some notations and definitions from the theory of greedy algorithms. Let H be a real Hilbert space with an inner product $\langle \cdot, \cdot \rangle$ and the norm $||x|| := \langle x, x \rangle^{1/2}$. We say a set \mathcal{D} of functions (elements) from H is a dictionary if each $g \in \mathcal{D}$ has norm one (||g|| = 1) and $\overline{\text{span}}\mathcal{D} = H$. We give now the definition of WGA (see [T]). Let a sequence $\tau = \{t_k\}_{k=1}^{\infty}, 0 \leq t_k \leq 1$, be given.

Weak Greedy Algorithm. We define $f_0^{\tau} := f$. Then for each $m \geq 1$, we inductively define:

1). $\varphi_m^{\tau} \in \mathcal{D}$ is any satisfying

$$|\langle f_{m-1}^{\tau}, \varphi_m^{\tau} \rangle| \ge t_m \sup_{g \in \mathcal{D}} |\langle f_{m-1}^{\tau}, g \rangle|;$$

$$f_m^{\tau} := f_{m-1}^{\tau} - \langle f_{m-1}^{\tau}, \varphi_m^{\tau} \rangle \varphi_m^{\tau};$$

$$G_m^{\tau}(f,\mathcal{D}) := \sum_{j=1}^m \langle f_{j-1}^{\tau}, \varphi_j^{\tau} \rangle \varphi_j^{\tau}.$$

The following theorem has been proven in [T].

Theorem A. Assume

$$(1.1) \sum_{k=1}^{\infty} \frac{t_k}{k} = \infty.$$

Then for any dictionary \mathcal{D} and any $f \in H$ we have

$$\lim_{m \to \infty} \|f - G_m^{\tau}(f, \mathcal{D})\| = 0.$$

In Section 2 of this paper we prove the following theorem.

¹This research was supported by the National Science Foundation Grant DMS 9970326 and by ONR Grant N00014-91-J1343

Theorem 1. In the class of monotone sequences $\tau = \{t_k\}_{k=1}^{\infty}$, $1 \geq t_1 \geq t_2 \geq \cdots \geq 0$, the condition (1.1) is necessary and sufficient for convergence of Weak Greedy Algorithm for each f and all Hilbert spaces H and dictionaries \mathcal{D} .

In Section 3 we consider another particular case of sequences τ . Let $\mathcal{N} := \{n_k\}_{k=1}^{\infty}, n_1 < n_2 < \dots$, be a given subsequence of natural numbers and $0 < t \leq 1$. We define

$$\tau(\mathcal{N}, t) := \{ t_n : t_{n_k} = t \text{ and } t_n = 0, n_k < n < n_{k+1}, k = 1, 2 \dots \}.$$

It is convenient for us to impose some regularity restrictions on \mathcal{N} . We consider the class \mathcal{M} of sequences

$$\mathcal{M} := \{ \{n_k\}_{k=1}^{\infty} : n_{k+1} - n_k \ge n_k - n_{k-1}; n_{k+1} n_{k-1} \le n_k^2, k = 2, \dots \}.$$

We prove in Section 3 the following theorem.

Theorem 2. In the class of sequences $\tau(\mathcal{N},t)$, $\mathcal{N} \in \mathcal{M}$, the condition

(I)
$$\sum_{k=1}^{\infty} \frac{(n_{k+1} - n_k)^{1/2}}{n_k} = \infty$$

is necessary and sufficient for convergence of Weak Greedy Algorithm for each f and all Hilbert spaces H and dictionaries \mathcal{D} .

2. Proof of Theorem 1

The sufficiency of condition (1.1) for convergence follows from Theorem A. We prove here the necessity part in Theorem 1. Let H be a Hilbert space with an orthonormal basis $\{e_j\}_{j=1}^{\infty}$. For two elements e_i , e_j , $i \neq j$, and for a positive number $t \leq 1/3$ we define the procedure which we call "equalizer" and denote $E(e_i, e_j, t)$.

Equalizer $E(e_i, e_j, t)$. Denote $f_0 := e_i$ and $g_1 := \alpha_1 e_i - (1 - \alpha_1^2)^{1/2} e_j$ with $\alpha_1 := t$. Then $||g_1|| = 1$ and $\langle f_0, g_1 \rangle = t$. We define the sequences $f_1, \ldots, f_N; g_2, \ldots, g_N; \alpha_2, \ldots, \alpha_N$ inductively:

$$f_n := f_{n-1} - \langle f_{n-1}, g_n \rangle g_n; \quad g_{n+1} := \alpha_{n+1} e_i - (1 - \alpha_{n+1}^2)^{1/2} e_i$$

with α_{n+1} satisfying

$$\langle f_n, g_{n+1} \rangle = t, \quad n = 1, 2, \dots$$

Let $f_n = a_n e_i + b_n e_j$ and $N := N_t$ be the number such that

$$a_{N-1} - b_{N-1} > \sqrt{2}t$$
, $a_N - b_N < \sqrt{2}t$.

Then we modify the N-th step as follows. We take $g_N := 2^{-1/2}(e_i - e_j)$ and

$$f_N = f_{N-1} - \langle f_{N-1}, g_N \rangle g_N.$$

It is clear that than $a_N = b_N$ and

$$t \le \langle f_{N-1}, g_N \rangle \le 2t.$$

We list here the following simple relations

$$a_{n+1} = a_n - t\alpha_{n+1};$$
 $b_{n+1} = b_n + t(1 - \alpha_{n+1}^2)^{1/2},$ $n < N - 1;$

(2.1)
$$a_{n+1} - b_{n+1} = a_n - b_n - t(\alpha_{n+1} + (1 - \alpha_{n+1}^2)^{1/2}), \quad n < N - 1;$$

$$||f_{n+1}||^2 = ||f_n||^2 - t^2, \quad n < N - 1.$$

Relation (2.1) and the inequality $1 \le x + (1-x^2)^{1/2} \le 2^{1/2}, \ 0 \le x \le 1$, imply that

$$(2.2) N \le 1/t$$

and

$$||f_N||^2 \ge ||f_{N-1}||^2 - 4t^2 \ge ||f||^2 - t - 3t^2.$$

This gives for $t \leq 1/3$ that

$$||f_N||^2 \ge ||f||^2 - 2t.$$

It is clear that $E(e_i, e_j, t)$ is a WGA with regard to the dictionary $e_i, g_1, g_2, \ldots, g_N$ with the "weakness" parameter t.

Let $1/3 \ge t_1 \ge t_2 \ge \cdots \ge 0$ be such that

$$(2.3) \sum_{k=1}^{\infty} \frac{t_k}{k} < \epsilon$$

with $\epsilon > 0$ to be chosen later. Then

$$\sum_{s=0}^{\infty} t_{2^s} < 2\epsilon.$$

We define WGA and a dictionary \mathcal{D} as follows. We begin with $f:=e_1$ and apply $E(e_1,e_2,t)$. After $N_{t_1}\geq 1$ steps we get $g_1^0,\ldots,g_{N_{t_1}}^0$ and

$$f^1 = c_1(e_1 + e_2)$$

with the properties

$$||f^1||^2 \ge ||f||^2 - 2t_1; \quad (c_1)^2 \le 1/2.$$

We use now $E(e_1,e_3,t_2)$ and $E(e_2,e_4,t_2)$. After $2N_{t_2}\geq 2$ steps we obtain $g_1^1,\ldots,g_{2N_{t_2}}^1$ and

$$f^2 = c_2(e_1 + \dots + e_4)$$

with the properties

$$||f^2||^2 \ge ||f^1||^2 - 2t_2; \quad (c_2)^2 \le 2^{-2}.$$

After s iterations we get

$$f^s = c_s(e_1 + \dots + e_{2^s})$$

and apply $E(e_i, e_{i+2^s}, t_{2^s})$, $i = 1, 2, ..., 2^s$. We make $2^s N_{t_{2^s}} \ge 2^s$ steps and get $g_1^s, ..., g_{2^s N_{t_{2^s}}}^s$ and

$$f^{s+1} = c_{s+1}(e_1 + \dots + e_{2^{s+1}})$$

with the properties

$$||f^{s+1}||^2 \ge ||f||^2 - 2t_1 - 2t_2 - \dots - 2t_{2^s} \ge 1 - 2\sum_{s=1}^{\infty} t_{2^s} \ge 1 - 4\epsilon.$$

$$(c_{s+1})^2 \le 2^{-s-1}.$$

Choosing $\epsilon = \frac{3}{16}$ we see that $||f^s|| \ge 1/2$ for all s.

Thus we get that the WGA with τ satisfying (2.3) does not converge for $f=e_1$ with regard to the dictionary

$$\mathcal{D} = \bigcup_{k \in \mathbb{N}} e_k \cup \bigcup_{s \ge 0; 1 \le l \le 2^s N_{t_2 s}} g_l^s.$$

We will show now how the general case

$$\sum_{k=1}^{\infty} \frac{t_k}{k} < \infty$$

can be reduced to the case (2.3). We find n such that

$$\sum_{s=n}^{\infty} t_{2^s} < \epsilon,$$

take $f = e_1 + \dots + e_{2^n}$ and pick at the first $2^n - 1$ steps $e_1, \dots, e_{2^n - 1}$ as approximating elements from the dictionary. Then we use the described above procedure with $f = e_{2^n}$ instead of e_1 with the natural change in indices.

3. Proof of Theorem 2

We consider here the case of $\tau = \{t_n\}_{n=1}^{\infty}$ of the form

$$(3.1) t_{n_k} = t \text{ and } t_n = 0, \quad n_k < n < n_{k+1}, \quad k = 1, 2 \dots,$$

for a given subsequence $n_1 < n_2 < \dots$ Theorem A implies that the Weak Greedy Algorithm with the above τ converges if

$$\sum_{k=1}^{\infty} 1/n_k = \infty.$$

Theorem 2 shows that the above condition can be replaced by a weaker one. We begin with the proof of the sufficiency part of Theorem 2.

Lemma 3.1. In the class \mathcal{M} of sequences

$$\mathcal{M} := \{ \{n_k\}_{k=1}^{\infty} : n_{k+1} - n_k \ge n_k - n_{k-1}; n_{k+1} n_{k-1} \le n_k^2, k = 2, \dots \}$$

the following two conditions are equivalent

(I)
$$\sum_{k=1}^{\infty} \frac{(n_{k+1} - n_k)^{1/2}}{n_k} = \infty;$$

(II)
$$\forall \{a_j\} \in l_2 \quad \liminf_{k \to \infty} a_{n_k} \sum_{j=1}^{n_k} a_j = 0.$$

Remark 3.1. We point out here that in the proof of $(I) \Rightarrow (II)$ in Lemma 3.1 we use only the property of boundedness of n_{k+1}/n_k :

(B)
$$\exists C : \forall k \in \mathbb{N}, \quad \frac{n_{k+1}}{n_k} \le C.$$

Thus in the sufficiency part of Theorem 2 the assumption $\{n_k\}_{k=1}^{\infty} \in \mathcal{M}$ can be replaced by a weaker assumption (B). We note also that in the proof of $(II) \Rightarrow (I)$ in Lemma 3.1 we use only the property of convexity:

(C)
$$n_{k+1} - n_k \ge n_k - n_{k-1}$$
.

Proof of Lemma 3.1. Let us prove first that (I) implies (II). We will prove the following a little stronger statement than (II)

(3.2)
$$\sum_{k=1}^{\infty} (n_{k+1} - n_k)^{1/2} n_k^{-1} |a_{n_k}| \sum_{j=1}^{n_k} |a_j| < \infty.$$

It is known (see [Z],Ch.1,S.9) that $\{a_j\}_{j=1}^{\infty} \in l_2$ implies that

(3.3)
$$\{b_n\}_{n=1}^{\infty} \in l_2 \quad \text{with} \quad b_n := \frac{1}{n} \sum_{j=1}^{n} |a_j|.$$

We observe first that

(3.4)
$$\sum_{k=1}^{\infty} (n_{k+1} - n_k) b_{n_k}^2 < \infty.$$

Indeed, for any m > n we have

$$mb_m > nb_n$$

and for $n_k < m < n_{k+1}$ we have for $\{n_k\}_{k=1}^{\infty} \in \mathcal{M}$

$$b_{n_k} \le \frac{n_{k+1}}{n_k} b_m \le C b_m$$

with a constant C independent of k and m. Therefore

$$(3.5) (n_{k+1} - n_k)b_{n_k}^2 \le C^2 \sum_{m=n_k}^{n_{k+1}-1} b_m^2.$$

Combining (3.3) and (3.5) we get (3.4).

We return to (3.2)

$$\sum_{k=1}^{\infty} (n_{k+1} - n_k)^{1/2} n_k^{-1} |a_{n_k}| \sum_{j=1}^{n_k} |a_j| = \sum_{k=1}^{\infty} (n_{k+1} - n_k)^{1/2} |a_{n_k}| b_{n_k} \le$$

$$\left(\sum_{k=1}^{\infty} a_{n_k}^2\right)^{1/2} \left(\sum_{k=1}^{\infty} (n_{k+1} - n_k) b_{n_k}^2\right)^{1/2} < \infty.$$

Let us prove now that (II) implies (I). Assume the contrary that for $\{n_k\}_{k=1}^{\infty} \in \mathcal{M}$ we have

(3.6)
$$\sum_{k=1}^{\infty} (n_{k+1} - n_k)^{1/2} n_k^{-1} < \infty.$$

We will construct a sequence $\{a_j\}_{j=1}^{\infty} \in l_2$ such that

$$\lim_{k \to \infty} \inf a_{n_k} \sum_{j=1}^{n_k} a_j > 0.$$

Define

$$a_{n_k} := (n_{k+1} - n_k)^{1/4} n_k^{-1/2}; \quad a_j := (n_{k+1} - n_k)^{-1/4} n_k^{-1/2},$$

for

$$j \in (n_k, n_{k+1}), \quad k = 1, 2, \dots$$

Then (3.6) implies that $\{a_j\}_{j=1}^{\infty} \in l_2$. We have from the definition of $\{a_j\}_{j=1}^{\infty}$ that

$$\sum_{j \in [n_k, n_{k+1})} a_j \ge (n_{k+1} - n_k)^{3/4} n_k^{-1/2}.$$

Next, we obtain from here

$$\sum_{j=1}^{n_{k+1}} a_j \ge \sum_{l=1}^k \sum_{j \in [n_l, n_{l+1})} a_j \ge \sum_{l=1}^k (n_{l+1} - n_l)^{3/4} n_l^{-1/2} \ge$$

$$\sum_{l=1}^{k} (n_{k+1} - n_k)^{-1/4} (n_{l+1} - n_l) n_l^{-1/2} \ge (n_{k+1} - n_k)^{-1/4} \sum_{l=1}^{k} (n_{l+1}^{1/2} - n_l^{1/2}) =$$

$$(n_{k+1} - n_k)^{-1/4} (n_{k+1}^{1/2} - n_1^{1/2}).$$

This estimate and the definition of a_{n_k} implies (3.7). Lemma 3.1 is proved now.

Lemma 3.2. Assume that a sequence $\{n_k\}_{k=1}^{\infty} \in \mathcal{M} \text{ satisfies (I). Let } 0 < t \leq 1$ and $\tau = \{t_n\}_{n=1}^{\infty} \text{ satisfies (3.1). Then } \{f_{n_k-1}^{\tau}\}_{k=1}^{\infty} \text{ converges.}$

This lemma combined with the following simple modification of Lemma 2.1 from [T] give the sufficient part of the conclusion of Theorem 2.

Lemma 3.3. Assume that for some $\{n_k\}_{k=1}^{\infty}$

$$\sum_{k=1}^{\infty} t_{n_k}^2 = \infty.$$

Then if $\{f_{n_k-1}^{\tau}\}_{k=1}^{\infty}$ converges it converges to zero.

Proof of Lemma 3.2. This proof is similar to the corresponding arguments from [T]. We present it here for selfcompleteness of this paper. It is easy to derive from the definition of WGA the following two relations

(3.8)
$$f_m^{\tau} = f - \sum_{j=1}^m \langle f_{j-1}^{\tau}, \varphi_j^{\tau} \rangle \varphi_j^{\tau},$$

(3.9)
$$||f_m^{\tau}||^2 = ||f||^2 - \sum_{i=1}^m |\langle f_{j-1}^{\tau}, \varphi_j^{\tau} \rangle|^2.$$

Denote $a_j := |\langle f_{j-1}^{\tau}, \varphi_j^{\tau} \rangle|$. We get from (3.9) that

$$\sum_{j=1}^{\infty} a_j^2 \le \|f\|^2.$$

We take any two indecies n < m and consider

$$||f_n^{\tau} - f_m^{\tau}||^2 = ||f_n^{\tau}||^2 - ||f_m^{\tau}||^2 - 2\langle f_n^{\tau} - f_m^{\tau}, f_m^{\tau} \rangle.$$

Denote

$$\theta_{n,m}^{\tau} := |\langle f_n^{\tau} - f_m^{\tau}, f_m^{\tau} \rangle|.$$

Using (3.8) and the definition of the WGA we get for all n < m that

(3.10)
$$\theta_{n,m}^{\tau} \leq \sum_{j=n+1}^{m} |\langle f_{j-1}^{\tau}, \varphi_{j}^{\tau} \rangle| |\langle f_{m}^{\tau}, \varphi_{j}^{\tau} \rangle| \leq \frac{a_{m+1}}{t_{m+1}} \sum_{j=1}^{m+1} a_{j}.$$

Specifying $n = n_l - 1$ and $m = n_k - 1$ we get from (3.10) that for any l < k

(3.11)
$$\theta_{n_l-1,n_k-1}^{\tau} \le t^{-1} a_{n_k} \sum_{j=1}^{n_k} a_j.$$

The relation (3.11) and Lemma 3.1 imply that

$$\varliminf_{k\to\infty} \max_{l< k} \theta^\tau_{n_l-1,n_k-1} = 0.$$

It remains to use the following simple lemma (see [T]).

Lemma 3.4. Let in a Banach space X a sequence $\{x_n\}_{n=1}^{\infty}$ be given. Assume that for any k, l we have

$$||x_k - x_l||^2 = y_k - y_l + \theta_{k,l},$$

with $\{y_n\}_{n=1}^{\infty}$ is a convergent sequence of real numbers and $\theta_{k,l}$ satisfying the property

$$\lim_{l \to \infty} \max_{k < l} \theta_{k,l} = 0.$$

Then $\{x_n\}_{n=1}^{\infty}$ converges.

We proceed now to the necessity part of Theorem 2. We will need the following simple properties of sequences from \mathcal{M} . Denote

$$\Delta n_k := n_{k+1} - n_k.$$

Then by monotonicity of $\{\Delta n_k\}$ we have

(3.12)
$$n_{2^s} - n_{2^{s-1}} = \sum_{k=2^{s-1}}^{2^s - 1} \Delta n_k \le 2^{s-1} \Delta n_{2^s}$$

and

$$n_{2^s} - n_{2^{s-1}} \ge \sum_{k=1}^{2^{s-1}-1} \Delta n_k = n_{2^{s-1}} - n_1,$$

$$(3.13) n_{2^s} - n_{2^{s-1}} \ge (n_{2^s} - n_1)/2.$$

Combining (3.12) and (3.13) we get

$$\Delta n_{2^s} \ge 2^{-s} (n_{2^s} - n_1)$$

and

$$(3.14) (\Delta n_{2^s})^{-1/2} \le 2^s (\Delta n_{2^s})^{1/2} (n_{2^s} - n_1)^{-1}.$$

Next, $\{(\Delta n_k)^{1/2}/n_k\}$ is a monotone sequence:

$$(\Delta n_k)^{1/2}/n_k = n_k^{-1/2} (\Delta n_k/n_k)^{1/2}, \quad n_k \uparrow, \quad \Delta n_k/n_k \downarrow.$$

Thus the following two conditions are equivalent

$$\sum_{k=1}^{\infty} \frac{(\Delta n_k)^{1/2}}{n_k} < \infty,$$

(3.15)
$$\sum_{s=0}^{\infty} 2^s \frac{(\Delta n_{2^s})^{1/2}}{n_{2^s}} < \infty.$$

It is clear that (3.14) and (3.15) imply

$$\sum_{s=0}^{\infty} (\Delta n_{2^s})^{-1/2} < \infty.$$

The construction of the corresponding counterexample is similar to that from Section 2. We assume that

$$\sum_{s=0}^{\infty} (\Delta n_{2^s})^{-1/2} < \epsilon$$

with small enough ϵ , say, $\epsilon = 3/16$. Define a new sequence $\tau' := \{t'_n\}_{n=1}^{\infty}$ with

$$t'_n = (\Delta n_{2^s})^{-1/2}, \quad n \in [2^s, 2^{s+1}), \quad s = 0, 1, \dots$$

Then $t'_n \downarrow 0$ and the WGA from Section 2 with τ' and $f := e_1$ reduces the square of the norm of f by at most 2ϵ . We modify now the above WGA. At each step n_k we replace WGA by Pure Greedy Algorithm (PGA) what means that at each step n_k we throw away a term $c_l e_j$ with, say, the biggest j. Let us estimate how much do we reduce the square of the norm of f in this way. After s iterations we have

$$f^s = c_s(e_1 + \dots + e_{N_s}), \quad N_s \le 2^s, \quad (c_s)^2 \le 2^{-s}.$$

Relation (2.2) implies, that working on (s+1)-st iteration we will make at most N_s/t'_{2^s} steps of the algorithm. It is easy to see that after s iterations we have made at least 2^s steps. Therefore we will use PGA at most

$$\frac{N_s}{t_{2s}' \Delta n_{2s}} + 1 \le \frac{2^s}{(\Delta n_{2s})^{1/2}} + 1$$

times during (s+1)-st iteration. Thus the norm $\|\cdot\|^2$ will be reduced by at most

$$\frac{1}{(\Delta n_{2^s})^{1/2}} (1 + 2^{-s})$$

what gives the total reduction due to PGA steps at most 2ϵ . This reduction combined with the reduction of WGA at other steps sums up to at most 4ϵ . Choosing ϵ small enough (say $\epsilon = 3/16$) we get divergence of the defined above WGA.

Remark 3.2. In the proof of the necessity part of Theorem 2 we have used the convexity property (C) and also the monotonicity of $\{(\Delta n_k)^{1/2}/n_k\}$ what is weaker than the assumption $\{n_k\}_{k=1}^{\infty} \in \mathcal{M}$.

References

- [T] V.N. Temlyakov, Weak Greedy Algorithms, Advances in computational Mathematics 12 (2000), 213–227.
- [Z] A. Zygmund, Trigonometric series, University Press, Cambridge, 1959.